Low-dose CT reconstruction via edge-preserving total variation regularization

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-preserving and scale-dependent properties of total variation regularization

Abstract We give and prove two new and fundamental properties of total-variationminimizing function regularization (TV regularization): edge locations of function features tend to be preserved, and under certain conditions are preserved exactly; intensity change experienced by individual features is inversely proportional to the scale of each feature. We give and prove exact analytic solutions ...

متن کامل

GPU-based fast low-dose cone beam CT reconstruction via total variation.

X-ray imaging dose from serial Cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. The goal of this paper is to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data ...

متن کامل

Anisotropic Tensor Total Variation Regularization For Low Dose Low CT Perfusion Deconvolution

Tensor total variation (TTV) regularized deconvolution has been proposed for robust low radiation dose CT perfusion. In this paper, we extended TTV algorithm with anisotropic regularization weighting for the temporal and spatial dimension. We evaluated TTV algorithm on synthetic dataset for bolus delay, uniform region variability and contrast preservation, and on clinical dataset for reduced sa...

متن کامل

Gamma regularization based reconstruction for low dose CT.

Reducing the radiation in computerized tomography is today a major concern in radiology. Low dose computerized tomography (LDCT) offers a sound way to deal with this problem. However, more severe noise in the reconstructed CT images is observed under low dose scan protocols (e.g. lowered tube current or voltage values). In this paper we propose a Gamma regularization based algorithm for LDCT im...

متن کامل

Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares

BACKGROUND In order to reduce the radiation dose of CT (computed tomography), compressed sensing theory has been a hot topic since it provides the possibility of a high quality recovery from the sparse sampling data. Recently, the algorithm based on DL (dictionary learning) was developed to deal with the sparse CT reconstruction problem. However, the existing DL algorithm focuses on the minimiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics in Medicine and Biology

سال: 2011

ISSN: 0031-9155,1361-6560

DOI: 10.1088/0031-9155/56/18/011